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Abstract. We have investigated the processes N(7, )N and N(7, 7)N close to eta threshold using a simple,
nonrelativistic Lee model which has the advantage of being analytically solvable. It is then possible to study
the Riemann sheets of the S-matrix and the behavior of its resonance poles especially close to threshold. A
theoretical simulation of the experimental cusp effect at eta threshold leads to a characteristic distribution
of poles on the Riemann sheets. We find a pole located in the 4" Riemann sheet that up to now has not
been discussed. It belongs to the cusp peak at eta threshold. In addition we obtain the surprising result
using the Lee model that the resonance S11(1535) does not play a large role. The main features of the
experimental data can be reproduced without explicitly introducing this resonance. Furthermore, we have
also studied the reactions N(v, m)N and N(v, n)N and find reasonable agreement between the data and
both models with and without the S11(1535) resonance.

PACS. 13.60.Le Meson production — 14.20.Gk Baryon resonances with S = 0 — 13.75.Gx Pion-baryon

interactions

1 Introduction

The advent of new electron accelerators and intense pho-
ton sources substantially improved the data basis of elec-
tron and photoproduction of eta mesons. High quality
data for angular distributions and total cross sections for
photon energies between threshold and 790 MeV may be
considered a qualitative breakthrough in the experimental
field. The progress in experimental proficiency demands a
better theoretical understanding of these processes.

The eta meson is believed to be mainly produced by
the resonance S71(1535) which is located close to eta
threshold (1486 MeV). Considerable work has been done
in the case of eta photoproduction [1], [2], [3] with the
S11(1535) resonance as the main production channel.

The eta threshold also influences scattering cross sec-
tions other than eta production. This is especially true
in elastic pion scattering where a strong cusp effect is ob-
served due to unitarity. The presence of this cusp makes it
difficult to get information on the resonance S11(1535), be-
cause the cusp and the resonance have similar signatures
when analyzing experimental data. Even the existence of
the resonance S11(1535) seems to be questionable [4], [5].
In a recent coupled channel calculation for eta and kaon
photoproduction, Kaiser et al. [6] have shown that the
S11(1535) can as well be explained as a quasi-bound state
of kaon/X-hyperon.

It is generally accepted that the S71(1535) couples
strongly to the eta while the neighboring resonance

S11(1650) for all practical purposes does not decay into
eta mesons. It is not clear why these two neighboring res-
onances, having the same quantum numbers, behave so
differently.

We investigated theoretically the combination of a res-
onance and the threshold effect using a Lee model because
of its simplicity and clearness. It is fully analytically solv-
able, unitary and can in principle be extended to an ar-
bitrary number of different mesons and resonances. The
absence of antiparticles makes the model nonrelativistic.
However, a covariant formalism of resonance excitation
also leads to problems, e.g. anti-resonances (GGq) that are
very unlikely in terms of quark models. Analyticity is
mainly due to an inherent Tamm-Dancoff approximation
in the model which limits the number of mesons present
at any instant.

Our model describes the interaction of the nucleon, the
two resonances S11(1535) and S11(1650), the pion and the
eta meson. Making use of perturbation theory we also in-
cluded photoproduction of pions and eta mesons. From
our calculation we find that two-pion production can not
entirely be neglected. It was accounted for in a simple
manner as discussed in Sec. 3. Coupling constants used
in our model were determined by fitting to experimen-
tal data from pion scattering experiments and eta (pion)
photoproduction.

It is especially interesting to study the scattering ma-
trix S. It is defined on several Riemann sheets of the com-
plex energy plane. One finds that poles of S are distributed
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in a characteristic way on these sheets and can be identi-
fied with objects like resonances or the cusp.

The Lee model was introduced in 1954 by T.D. Lee to
study questions concerning renormalization of field theo-
ries [7]. Pauli, Glaser and Kéllén [8], [9] used this model
in order to investigate the appearance of “ghost states”,
states of negative probability density. Ghost states appear
when coupling constants are chosen to be large. This lead
to the discussion of the meaning of an indefinite metric
in a Hilbert space. Héhler [10] used the Lee model for a
quantum mechanical examination of the exponential de-
cay law of unstable particles. The Lee model has not been
extensively utilized for decades. A good introduction can
be found in [11] and [12]. Using the Lee model our main
goal was not the perfect description of experimental data
but to investigate the interplay and meaning of both cusp
effect and resonance S11(1535) at threshold.

We find that in order to properly treat the threshold
effect, rescattering and calculation to all orders of pertur-
bation theory is essential. A simple Born approximation
at eta threshold is insufficient. We show which Riemann
sheets should be considered when looking for resonance
poles on the complex energy plane. The sheet structure
plays an important role at threshold.

From the fact that the experimental data can be
roughly described without explicitly using the resonance
S11(1535), we think that the importance of this resonance
is commonly overestimated and threshold effects must be
taken into account.

In the following we give an introduction to the gener-
alized Lee model. We then discuss the fit results together
with the experimental data. First we consider the produc-
tion of eta mesons when pions are scattered by a nucleon.
Finally we treat eta and pion photoproduction.

2 A generalized Lee model

According to the quantum numbers of the S71(1535) reso-
nance, eta production happens mainly in a s-wave channel.
Since angular momentum and isospin are conserved quan-
tities in strong interaction, we can also restrict our calcu-
lation to the Hilbert subspace where L = 0 and I = 1/2.
Furthermore, we work in the center of momentum system.
These choices considerably simplify our calculations.

The particles that appear in our model are the nucleon
N, the two resonances Ry and Ry (namely S11(1535) and
511(1650)) and the two mesons M; and M, (pion and
eta). Taking the quantum numbers in isospin space to be
I =1/2 and I, = 1/2, the nucleon pion state is actually
a superposition of the physical pion states:

| N7, I =1/2,1, =1/2)

1 o
= = (VaIm [=H=15) [ 7). (1)

We adopt the following notation, so that the isospin does
not appear explicitly:

| N,7) =| Nym, I =1/2,1, = £1/2). 2)
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Fig. 1. The vertices for the resonance and the contact interac-
tion. The indices | and I’ stand for the meson type, the index
j refers to the resonances

Because we want to make full use of the isospin formalism
we have the difficulty of attributing masses to the pion
and the nucleon since the physical particles (7°, 77) and
(n, p) all have different masses. We chose average masses
m, = 137 MeV and mpy = 939 MeV.

The mesons and the nucleon are treated as stable parti-
cles. However, the resonances S11(1535) and S11(1650) are
not stable, because of the decay into nucleon and mesons.
This leads to a “dressing” of resonances, e.g. the physical
resonances are surrounded by a cloud of virtual mesons.
In our calculation we use the bare resonance states - not
the physical ones. Therefore the masses of the resonances,
mp;, that appear in the model are bare masses and are
used as fit parameters in the model.

The following self adjoint Hamiltonian describes the
five particles and their interactions. It consists of two
parts, the free Hamiltonian and the interaction term:

H = Ho + Hint 5
so that

H, | Rj) = mpgj | Ry),
H, | N(=k), My(k)) = W, | N(=k), My(k)),  (3)

where W, is the total energy in the center of momentum
(c.m.) system,

le\/ml2+l§2+\/m?v+f€2. (4)

k is the momentum of particles in the c.m. system. We dis-
tinguish two sorts of interaction among the particles: “res-
onance interaction” and “contact interaction” (see Fig. 1).
In the resonance interaction a meson and a nucleon com-
bine to form a resonance, or a resonance disintegrates into
a meson and a nucleon

Rj <~ N,Ml,

(Rj | Hint | N(=k), Mi(k)) = ¢fy Fi(W0). (5)

The index [ is used for mesons, index j refers to reso-
nances and gfl is the respective coupling constant. F;(W;)
is a real cut-off form factor which is introduced to assure
convergence of expressions that will appear later in the
calculations for the cross sections. It determines how the
interaction between the particles weakens as the kinetic
energy rises.
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The contact interaction on the other hand corresponds
to a nonresonant interaction, ingoing mesons are scattered
into outgoing mesons,

N,M; < N, My,

(N, My(F) | Hins | N, My (K'))
= LB (W) B(W). (6)

T

The coupling constants g;;; for the contact interaction
term are symmetric, e.g. g; 1 = g -

Figure 1 shows the vertices for these interactions. The
cut-off function F;(W;) is taken to be the same for the reso-
nance and contact interaction terms. This is arbitrary, but
it simplifies the calculations. In our computer simulations
(see sect. 2.2) we chose F;(W;) to be a simple analytical
function in order to keep computation time short. In prin-
cipal, F; can also be deduced from more advanced models
by evaluating the matrix elements in (5) and (6).

To determine the energy eigenstates of the total Hamil-
tonian H, we write

H | N Mi(R))+ =W | N, Mi(k))+, (7)

where | N, M;(k)), is a scattering state which satisfies
the Lippmann-Schwinger equation for ingoing boundary
conditions,

| N, M;(F)) 4

| N, Mi()) -

— —  Hi | N,M;(k))s . (8
HO_W_iE ’L’I’Lt| 7/( )>+ ( )
M, stands for the incident meson (¢ =incident) that at
time t = —oo comes in as a plane wave. The Lippmann-
Schwinger equation can be solved using the following
ansatz,

| N, M;(k

+—ZﬁU%
+Z/d3k’ HEY | N, M(ED) . (9)

The coefficients « and 8 in (9) can be obtained by
multiplying from the left with (R; |, (N, M; | and using
the orthonormality of the basis. If we define

i = [ @k Fviai(h), (10)
we get
Bl = _é.zgfﬁ t (11)
J mR]’—W ; U
. L (W)
aj(k) = 6(k — K)bri + g lWllHe Ztl,Gl/l, (12)
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where

R R
950950 gri

1
- 8 (13)

Gl/l =
2
J
Gy can be considered as an effective coupling constant.
It is energy dependent and symmetric, G;; = Gy (W) =

Gu.
After inserting (12) into (10) one obtains:

>ty =8, F(W) (14)
with
hy =610 — HiGyy (15)
and
F2(Wy)
H=HW)) = | & ——~*~ 16
=) = [k i )

Eq. (14) is a system of linear equations for ¢} which can be
solved by standard mathematical methods. We note that
in the derivation of (14) the number of different resonances
and mesons in the model is arbitrary. If for example n
different mesons are involved in the scattering process, a
n x n matrix needs to be inverted. When solving for ¢!
one encounters an important function which we call hge;.
It is the determinant of h; in (14) and contains most of
the information of the scattering process. It is a function
of Gy and H;. As will be shown hge.; as well as H; are
meromorphic functions of W. They are defined on several
Riemann sheets.

Once the tf are determined the scattering amplitude
T; can be calculated,

Tpi = (N, My(ky) | Hint | N, M;(ks)) +

= —Fy (W) Z Gy t;-, , (17)
l/

where f and ¢ stand for outgoing and incoming mesons
respectively.

2.1 An example

In order to familiarize the reader with the Lee model,
we present here a simple and instructive example that
shows the principal features of the general Lee model. We
will calculate scattering amplitudes, cross sections and the
scattering matrix, which will all appear in their familiar
textbook forms.

We consider the case where the two mesons, 7 and 7,
couple only to one resonance R; (resonance interaction)
without contact interactions. The coefficients « and 3 of
the scattering state are then found to be

1

8k = W, — W —ie’

o (k) = ki) 61 (18)

(19)

- B gty FL(W))
1

9
hdet

ﬁi = —QﬁiFi(W)
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where hge; is the determinant mentioned before:

haet = haet(W) = mpr — W = (gfY)*Hi. (20)
1

We immediately obtain expressions for the scattering am-
plitude Tf; and the scattering cross section

Tpi = (N, My(ky) | Hine | N, Mi(ki)) - (21)
Fy(W)E(W)
= _g{{,i fo ! A . (22)
det
Using Fermi’s rule we obtain the cross section

do 27 1
= | Ty |? o(W 23
a6 = 7 | T e, (23)

where J;,, is the incoming flux and o(W) is the phase space
density of the outgoing state.

After taking a closer look at the H; we can write the
scattering cross section in a very convenient form. We take
H; as in (16) and make use of the identity

1 1
=P +im (W, — W 24
W Wi Lwow S W= W), (24)
where P stands for the principal value. Let us write
(g1)? Hi= A +i 112, (25)

where we set

I w B
5 =4n° (gf) F (W) b= (W — my — mi) , (26)
> F2(Wl) wy EN
A =d4n (gF)? P dW; k 2
=47 (919) /m+mN WlWl_W T (27)
and w; = y/m? —&—1;5'12 and Ey = \/m%,—i—lz:?. I turns out

to be the partial width of the resonance for the decay
channel into meson ! and the nucleon. The step function
© in the expression for I} leads to a zero partial width
below threshold of meson [, and 4; can be interpreted as
the mass shift of the resonance due to its interaction with
the mesons.

This can be clearly seen when we look at the expression
for the scattering cross section that we finally obtain:

2
do 1 |Ti/ o
an kf hdet

1 IIy/4
k2 (mp— Ap — Ay = W)2 + (In/2+ 1,/2)%

The cross section has the well known Breit-Wigner form of
a resonance. We note, that the total Breit-Wigner width
of the resonance, I}.:, is the sum of the partial widths,
I'x+1I,. The physical mass of the resonance, mp—A,—A4A,,
is composed of the bare mass of the resonance mpr and
the “mass shifts” A, and A,. The physical mass of the
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resonance is lowered by the coupling to the mesons. The
partial “mass shifts” of the resonance, 4;, add up to give
a total mass shift. It is interesting to note that the same
function Fj that cuts off the interaction between the parti-
cles also is the cut-off for the width I7;. F; is supposed to be
a smooth function that gradually falls off as W increases.
We then reckon that the widths I} grow proportionally
to ki(W) at their respective [-meson threshold when W
is increased. This is in agreement with general scattering
theory that predicts the same behavior for s-wave reso-
nances.

The S-matrix is a 2 X 2 matrix which corresponds to
the two reaction channels. One finds

e /T, T,

So — . hdet hdt?t
i/ Il - ily
hdet hdet

S, is unitary and the off-diagonal elements are equal which
corresponds to time inversion symmetry. From S, one can
easily determine the scattering phases by comparing it to
the textbook form of a two channel S-matrix:

—¢e ez‘(61+62)>

E 621'52

é- eQi(Sl i

So = (z T—¢2 o i(61+62)

where ¢ is the inelasticity and 6/, are the elastic scatter-
ing phases.

2.2 The form factor I

The cut-off functions F; are constructed so that at low
energies their values are constant. With increasing energy
the interaction between the particles gradually decreases.
It seems reasonable that at the c.m. energy of about two
nucleon masses the interaction should be strongly sup-
pressed.

Although there are many different cut-off functions
which fulfill these features it turns out that in general
they produce similar results. We selected a cut-off function
simple enough so that the integrals H; could be calculated
analytically. Explicitly we fixed the cut-off function such
that

FE (W)
HW)= [ &k
() W, —Ww
C J— J—
— VZm aw, YT (o)

mi+my Wi -w
where C' is a cut-off parameter. C' was chosen to be 2000
MeV, so the interaction of the meson with the nucleon
stops abruptly for W, > C. We now show that H; (as a
complex function) is defined on two Riemann sheets.

Let us consider W in (29) as a complex variable. Hj is
then two sheeted and has a cut from m; + my to C. The
easiest way to see this is by approaching the real axis from
above and below and making use of the identity (24). The
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continuation of H; into its second sheet can be done by
contour deformation of the integral and applying Cauchy’s
residue theorem. Explicitly we find:

15t sheet = 2v2my/C —my — my

— 242myn/my+my — W
VO —my —my
N RS

Hy (W)

(30)
x arctan(

HI(W) |2"dsheet = Hl(W) 1stsheet
+ 2/ 2muN/my + my — W

H; diverges at W = C because of the step of the cut-
off at C'. In our simulations we always stayed well below
C.

Under the condition C'—m;—mpy >>| m;+my—W |,
we can approximate

Hl(W) |2”dsheet ~ 2\/ 2ml V C— mp—mnN
+ T 2my/my +my — W

The expression vvm; +my — W is directly related to the
partial width of the resonance I} as defined in Sec. 2.1. At
threshold, e.g. m; + my = W, v/m; + my — W becomes
imaginary and grows like the meson momentum k; with
increasing energy W.

2.3 The S-matrix

We can get a better understanding of the physics under-
lying the scattering and production processes by studying
the S-matrix S,. We will show in the following how poles
of the scattering matrix can be identified with resonance
peaks or cusp peaks in physical cross sections. It will be-
come clear that the distribution of poles and their location
on different Riemann sheets gives valuable information on
the physics involved. We can take full advantage of the fact
that the Lee model is analytically solvable. Important fea-
tures of the S-matrix are determined by general physical
laws like unitarity, causality, time reversal invariance and
symmetries of the interactions. A very good introduction
to the subject can be found in the books by Nussenzveig
and Bohm [13], [14]. In the following we consider the
S-matrix as a complex function of the energy W. S is then
found to be meromorphic and is defined on several Rie-
mann sheets. It is mainly determined by the determinant
hdet, which is the same for all channels, e.g. in our case
N(mw,m)N, N(m,n)N, N(n,n)N and N(n,7)N. As a con-
sequence the S-matrix has also the same Riemann sheet
structure as hge;. For our example in Sec. 2.1, we have
haet = mp — g7 Hx — g1 Hy — W . (31)
which is a four sheeted function, because each H; is de-
fined on two sheets. hg4.; has two cuts located on the real
energy axis corresponding to each of the cuts of the two
H;. As discussed in the previous chapter the cuts start at
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1.

4. e
, /N .
T ’ n 3’.

2.

Fig. 2. The four Riemann sheets for the pion and eta meson
and the paths from one sheet to the next

the respective meson production thresholds which are also
the branch points for the Riemann sheets. One can change
Riemann sheets by crossing a cut. Crossing a cut twice is
the same as not crossing it. Given two different cuts, the
four combinations of crossing cut 1 and 2 correspond to
four Riemann sheets (see Fig. 2). There are thus 4 sheets
and they meet at the eta threshold. Starting from the first
sheet one moves into the second or third sheet depending
on whether the cut was passed below or above eta thresh-
old. The fourth sheet can be reached from the first sheet
by passing the two cuts, the one below and the one above
eta threshold.

We find poles on the Riemann sheets that belong to the
resonance, Ry, called resonance poles. The coordinates of
the S-matrix poles are functions of the coupling constants.
In a typical case when the coupling constants are small,
the resonance poles are found in the second and the third
sheet close to the bare mass mpg. Following the discussion
in Sec. 2.1, the pole coordinates will then be practically
determined by the partial widths I; and the mass shifts
A;. If the resonance peak of the scattering cross section
is located above (below) eta threshold, its shape is de-
termined by the pole in the third (second) sheet. As the
coupling constants are increased the ‘virtual’ meson cloud
is bound more and more tightly to the physical resonance.
This lowers the physical mass of the resonance (the res-
onance peak moves towards the pion threshold) and in-
creases its decay width. As a consequence the resonance
pole moves away from the physical axis and towards the
pion threshold (see Fig. 3). In general this behavior is the
same for poles in the second or third sheet. However, if
the coupling constant g{?7T is held small and constant, and
only the coupling of the eta meson gffn is increased, the
pole in the second sheet moves into the fourth sheet as
drawn in Fig. 3. It is this pole in the fourth sheet that

A Im A Tm
A 4. sheet
———

R«

BV LN AR

T n x} 7 Re T n I’él

\_/ RI
3. sheet 2. sheet

Fig. 3. Pole movement in the 3" and the 2"¢ (4*") sheet (see
text)
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gives rise to the cusp peak at eta threshold. This will be
of importance in the following section.

We briefly remark that if the coupling of the mesons
to the resonance becomes strong enough the physical res-
onance finally becomes a bound state. This bound state
is then represented by a pole in the first sheet on the real
axis below pion threshold. Indeed, with increasing cou-
pling constants the pole of the second sheet moves to-
wards (and finally onto) the pion threshold where it can
pass across the branch point to the first sheet. This be-
havior of the pole was first seen by Hohler [10] (see also
in detail [15] and [16]).

3 Scattering phase analysis of pion nucleon
scattering

Because we work in the Hilbert subspace corresponding
to quantum numbers I = 1/2, J = 1/2 and L = 0, it is
convenient to use a partial wave phase analysis of the ex-
perimental data to determine the parameters of our model.
There is a variety of scattering phase analysis which differ
partially in their results because the evaluation methods
and the underlying data are often not identical. Among
the best known are those from Karlsruhe Helsinki (KH,
[17], [4], [18]), Carnegie-Mellon-Berkeley (CMB, [19],
[20]) and from the Virginia Polytechnic Institute (VPI,
[21]). In our work we used mainly the VPI analysis by
Arndt et al. which has the convenience of being supported
by the SAID interactive dial-in program.

A typical Argand diagram (7p) of the S1; partial wave
for pion nucleon scattering is depicted in Fig. 4. The data
are taken from a VPI solution (Fall 93) [21]. Useful in-
formation can be obtained by studying the Argand dia-
gram which shows how the complex scattering amplitude
Ty for pion nucleon scattering changes as the c.m. energy
is increased. At low scattering energies we get Ty = 0.
With increasing energy Ty first moves counterclockwise
on the ‘unitarity’ circle which implies purely elastic scat-
tering of the pion. At about the “4 o’clock” position, T
bends sharply inwards. This corresponds to the thresh-
old of eta meson production. It is also at this energy that
the resonance S11(1535) is located. The more Ty moves
into the center of the unitary circle, the more the scat-
tering is inelastic, in our case due to the production of
eta mesons and two-pion production. After a small closed
loop Ty continues in a nearly perfect half circle. It is those
circular patterns in Argand diagrams that indicate the ex-
istence of a resonance [13,14]. In our case it corresponds
to the resonance S11(1650). However, there is no circle
that corresponds to the resonance S7;(1535). This may
imply that either there is no resonance or that its circle is
heavily deformed by the opening of the eta meson chan-
nel. We address this question in the next section when we
fit two models, one with and the other without resonance
S11(1535) to the experimental values of Tp.

Figure 5 shows the calculated elastic (o5) and inelastic
(o) partial wave scattering cross sections for the partial
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Argand Diagram

0.8r

0.2 0.4 0.6

0
Re To

Fig. 4. Argand diagram for the nN partial wave Si1. Data
from VPI [21]

wave S11 which have been obtained by

47
k2
T

k2

| Ty |° (32)

Og —

or=—(1—[1+2iT ).

The elastic cross section shows two peaks at about 1500
MeV and 1700 MeV. They can be linked to the resonances
S11(1535) and S11(1650) respectively. The peak at 1500
MeV is located at the eta meson production threshold. Its
tip is pointed; it has a cusp. The formation of the cusp is

Partial Wave Cross Sections
12 . ;

10 n threshold n threshold

-

1400
(MeV)

1%00 1200 1600 1800

Fig. 5. Scattering cross sections for the partial wave Si1, cal-
culated from the partial wave analysis by Arndt et al. [21].
(—) elastic cross section o5 for TN — 7N, (- - - - - ) inelastic
cross section o,. The data points are the cross sections for eta
production [23] and were multiplied by a Clebsch Gordan co-
efficient based Isospin factor 3/2 in order to be comparable to
the 511 partial wave cross section
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AN (
\\\Tm //(
7
\§\ R] 5/
AN
~ T nn v \,
~ v AR\ v
\ // \ r

Fig. 6. Vertices for the two-pion system

a threshold effect and is due to unitarity [22]. We show in
the next section that even the entire corresponding peak
at 1500 MeV can be completely explained as a threshold
effect. The peak can be reproduced in a model without
the resonance S11(1535).

In Fig. 5 we show the elastic and inelastic cross sec-
tions together with the data of Clajus and Nefkens [23]
for the total cross section of eta production. From this
comparison we find that the inelasticity of the pion scat-
tering is mainly due to the production of the eta meson.
For higher energies, however, the multi-pion production
is no longer negligible and consists essentially of two-pion
production in the energy range below 2 GeV.

Therefore, in order to reproduce the experimental data
qualitatively, the Lee model should include two-pion pro-
duction. However, the inherent Tamm-Dancoff approxi-
mation only allows one meson to be present at a time. We
circumvented this by introducing an additional “meson
particle” in our model representing a two-pion system.

We then solve the Lee model as before, only now with
three different types of mesons instead of two. The third
meson type stands for the pion pair. The vertices in Fig.
6 show the coupling the two-pion pair to the nucleon and
the resonances. This introduces three additional coupling
constants: gf%, gfzﬂ, 92r,x- At the two-pion threshold
the phase space density for the two-pion particle should
not increase proportionally to the momentum k like for
the pion or eta meson at threshold. Instead for a two-
pion system the phase space density grows approximately
quadratically with energy:

phase space o (War — 2pr — my)?2. (33)

We can take this into account by choosing Hs, to be

Hy — /Ch W, Wer = 2pn —mn)”
T 2Ur+m N " Mo (WQTI' -W - 7’6)

The cut-off mass, Cs,, was chosen to be 2000 MeV in
our calculation. With our method of representing two pi-
ons by one effective particle we can not describe exclusive
two-pion production, but rather use this representation to
explain the total reaction cross section.

By taking into account two-pion production we also
change the analytic structure of the S-matrix. Now there
is a third threshold at 2m, +my and additional Riemann
sheets appear. Moreover with our choice of Ha, in (34),
Hs, is no longer a two sheeted function of W, but has
an infinite number of sheets. However, these sheets do not

(34)
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Fig. 7. Riemann sheets when two-pion production is taken
into account

play an important role in our discussion, because we are
only interested in the sheet structure in the immediate
vicinity of the eta threshold. The local sheet structure at
eta threshold stays unchanged. Also our discussion of the
Riemann sheets and the motion of poles in Sec. 2.3 is still
valid. Figure 7 shows the new Riemann sheet structure.
The sheets are numbered such that the sheet structure
around the eta threshold looks the same as in Fig. 2.

4 Determination of coupling constants and
poles

A glance at the partial wave cross section in Fig. 5 shows
that at pion threshold (far away from the first resonance)
the cross section undergoes a rapid change with increasing
energy. The elastic pion nucleon scattering cross section at
pion threshold is even larger than the resonance peaks of
the resonances S11(1535) and S11(1650). The great mag-
nitude of the elastic scattering cross section is theoreti-
cally confirmed by low energy theorems for pion scatter-
ing which make use of chiral symmetry [24], [25]. Given
the nearly constant form factors at threshold as discussed
earlier, it is impossible to simulate the rapid fall-off of the
cross section from pion threshold to an energy of about
1300 MeV (see Fig. 5). A better form factor for the pion-
nucleon interaction would have to change quite rapidly at
pion threshold. As a consequence we used our model only
at energies above 1350 MeV.

4.1 Coupling constants

The free parameters of the model such as the coupling
constants and the resonance masses were determined by
fitting the Lee model to the experimental data extracted
from a partial wave analysis. We fitted two generalized Lee
models, one including the resonance Sy1(1535), the other
without. After fitting we compared the fitting results for
these two models. From our calculations we observe that
the peak at eta threshold is almost entirely due to the
cusp effect. Even without explicitly including the reso-
nance S11(1535) in the model the peak appears. Moreover
we find that the experimental data we used in our fits can
be qualitatively reproduced. The nonresonant coupling to
the eta meson gives similar results as obtained with a res-
onance interaction although the model has four fit pa-
rameters less than the model with resonance Si;(1535).
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Table 1. Coupling constants and masses of our two models
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Model with resonance S11(1535)

R R R R R
9i,n 92,y 92,7 91,27 92,27

Couplings 91,x 9n,m 9n, 7w 9r,m gr,27
values 0.24 0.12 0.01 0.25 0.0023 0.062 2.3x10™* 0.01 0.0031 0.0024
mpr1 = 1616 MeV, MR2 = 1713 MeV.
Model without resonance S11(1535)
couplings gi%, gi'x G5y  9ix  Glex  Giox  Gnm G, grm gr,2m
values 0 0 0 -0.24 0 0.052 —0.052 —0.045 0.0083 —0.0098
mpz = 1704 MeV.
1 3
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Fig. 8. Real and imaginary part of the scattering amplitude
To (Si1-partial wave) for the model with S11(1535) (—) and
without S11(1535) (- - -)

Figure 8 depicts the complex scattering amplitude T to-
gether with our fitted theoretical curves. The data have
been taken from the VPI solution (SM90) [21]. A per-
sistent difference between our two models is found at eta
threshold (1486 MeV). Im T, as obtained with the res-
onance S11(1535) is much smoother near threshold than
without the resonance. Figure 9 shows the cross section
for eta production in pion nucleon scattering.

In Tab. 1 the coupling constants are given for two fits,
Lee model with and without the resonance S11(1535). Be-
cause our model is quite different from other standard dy-
namical models, the coupling constants of the Lee model
can not be directly compared to the listed standard cou-
pling constants.

Also within the Lee model the magnitudes of resonance
coupling constants cannot be easily compared to the mag-
nitude of contact couplings. This may be understood when
looking at their different definitions in Sec. 2. In order to
reproduce the strong cusp effect and the strong production
of eta mesons, the overall coupling to the eta mesons has
to be strong. In one model the eta meson couples strongly
to the resonance S71(1535) (coupling constant gfn) in

Fig. 9. The cross section for eta production in pion nucleon
scattering. The solid and dashed lines show the model calcu-
lations with and without resonance S11(1535). Experimental
data are taken from Nefkens [23]

the other model it couples strongly by contact interaction
(gn,x)- In both models the resonance S1;(1650) couples
very weakly to the eta meson while it couples strongly to
the pion.

4.2 Poles on the Riemann sheets

One can get more information about the analytic struc-
ture of the T-matrix and the peaks of the cross section
in Fig. 5 by looking at the pole distribution on the Rie-
mann sheets. Table 2 gives the coordinates of the poles
for the two different models and Fig. 10 shows their lo-
cations in the complex plane. We note that the resonance
S11(1650) in both models has poles on the 2" and the 379
sheets, as is to be expected from Sec. 2.3. The coordinates
of the poles agree well with the mass and the width of
the resonance S11(1650). In both models we find a pole
on the 4*" sheet close to the eta threshold which is re-
sponsible for the cusp peak. This pole has not previously
been discussed. No additional resonance pole in the 3" or
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Table 2. Pole positions on the Riemann sheets for our two models

model S511(1650) Cusp/S11(1535)
2. sheet 3. sheet 3. sheet 4. sheet
with S11(1535)  (1655;-111) (1662;-87) (1501,-61) (1528;35)
no $11(1535)  (1652:-90) (1670;-60) - (1458;57)
Alm L .
L o~
L _ el
Cusp/ S ,(1535) $,1(1650)
b3 RN ~ ’
4. sheet h v Nl
4. sheet P ~
shee XL\; . N \leJJ
| | Fig. 11. Vertices for the coupling of the photons to the nucleon
1 I =Re
and the mesons
1500 1600 1700
% 3. sheet eta and pion photoproduction (yp). Since the photon cou-
o 3. sheet [ pling is weak, we use perturbation theory for the photopro-
3. sheet % 2. sheet duction. The strong interaction is still fully accounted for
2 sheot O as we can employ the full analytical solution of the strong
. sheet

Fig. 10. The pole positions on the Riemann sheets for our
two models. (%) model without S11(1535), (OJ) model with
S11(1535)

274 sheet is needed to account for the cusp peak. We can
trace back the origin of this pole by numerically lowering
the respective eta meson coupling constants as described
in Sec. 2.3. The pole then moves back to its original start-
ing point, which is different for the two models. For the
case of the model with resonance Si1(1535) the pole is
originally a resonance pole in the 2"? sheet that has been
pushed into the 4" sheet by the strong coupling to the eta
meson, whereas in the model without resonance S11(1535)
the pole always stays in the 4! sheet.

Another pole in the 37¢ sheet for the case of the model
with resonance S11(1535) is the resonance pole of the res-
onance S11(1535).

Finally we have compared our direct determination
of the poles with the speed plot technique suggested by
Hohler [4]. The pole of the resonance S11(1650) in the
374 sheet is very well reproduced by the speed technique
and found at (1666-81i) MeV in our model with S11(1535)
and at (1671-57i) MeV in our model without S11(1535).
In addition in both our models we see a very narrow spike
with a width of a few MeV at the n threshold which cor-
responds to the cusp. The resonance pole of the Sy1(1535)
in our model does not show up using the speed technique.
It is entirely covered by the cusp effect.

5 Eta and pion photoproduction

In order to check the consistency of our model and to fur-
ther study the role of the resonance S11(1535), we studied

interacting particles discussed in the preceding sections.
Figure 11 shows how the photon couples to the hadrons
via resonance and contact interactions. The matrix ele-
ments are defined as follows:

R, | H 7), (7 U5 g e 35
(R; | wlp(—V)w(V)i}—\/wTﬂo-e, (35)
(p(—=7),v(P), €| Hy | N(—Fk), My (F))

=I5 [y 6-e, (36)

Nz

where j is again the index for the resonances, gﬁ7 and
g1~ are the coupling constants for resonance and contact
terms, respectively. The momentum and the polarization
vector of the photon are denoted 7/ and €, and & is the
spin of the nucleon.

To first order approximation of perturbation theory,
the scattering matrix T'; is then

Ty = (N, M;(k) | H, | p,4(7),8),

and (N, My | is the outgoing scattering state as calcu-
lated in the previous section,

N, My | = Zﬂf(Rj |

(37)

+ZZ: / @k of (k) (N(=F), Mi(F) | (38)

The coefficients « and 3 are given in (11) and (12). As
before, we consider the two models with and without the
resonance S11(1535), with their respective parameters and
coupling constants given in Tab. 1 for pion scattering. We
fitted to the eta photoproduction cross section (vyp) and
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Table 3. Electromagnetic coupling constants for eta and pion
photoproduction

coupling constants gf?,;Y gfﬂ/

with S11(1535)  —2.33  —1.60
without Si1(1535) 0 1.3

Gry

0.0027
0.0024

9n~y

—0.0011
0.0058

20 ‘ ,
18}
16}
14

12
Q0
= 10
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960 10l00
E, (lab) (MeV)

0 .
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Fig. 12. The total eta photoproduction cross section with res-
onance S11(1535) (—) and without S11(1535) (- - -)

pion photoproduction amplitude Ey; (yp) (see Tab. 3).
The experimental data are taken from Wilhelm [26] and
Krusche [27] for eta photoproduction and for pion pho-
toproduction we used the VPI solution (Sp 95) [21]. The
results are shown in Figs. 12 and 13. The fit without res-
onance is not as good as the fit with the resonance. This
is partially due to the smaller number of fitting param-
eters (five parameters less). However, neither model can
well describe the dip of Im(FEp;.) at 1600 MeV. A more re-
alistic description of the background would be necessary
to better describe the data below 7 threshold. This would
also improve the result for eta photoproduction for the
case without the S11(1535) resonance.

6 Conclusion

We have constructed a generalized Lee model for pion
scattering and eta production in the s-wave channel. Using
only the Hilbert subspace corresponding to the quantum
numbers of the partial wave 571, the particles that appear
in the model are the resonances S11(1535) and S11(1650),
the nucleon, the pion and the eta meson. These five par-
ticles interact via a resonant and a nonresonant interac-
tion. The absence of antiparticles makes it a nonrelativis-
tic model. However, it has the advantage of being fully
unitary and analytically solvable. Eta and pion photopro-
duction were additionally calculated using a perturbation
approach. The coupling constants and other parameters
of the model were determined by fitting the model to par-
tial wave analyses and cross sections. The experimental

J. Denschlag et al.: Analysis of eta production using a generalized Lee model

Yyp=mn N, S11

1500 1600 1700

Wc_m' (MeV)

1300 1400 1800

Fig. 13. Real- and imaginary part of the pion photoproduc-
tion amplitude Eo4 for the proton traget with isospin 1/2,
vp — Nm. Theoretical curve with resonance S11(1535) (—)
and without S11(1535) (- - -)

data we used were total cross sections for eta meson pro-
duction in pion scattering [23] and eta photoproduction
[26]. In addition we employed a partial wave analysis of
pion nucleon scattering and Ey, amplitudes for pion pho-
toproduction [21], [27].

We were interested in studying the cusp effect and in
obtaining a better understanding of the interplay of the
resonance S11(1535) and the cusp at eta threshold. This
is particularly of importance when determining why the
neighboring resonances S11(1535) and S11(1650), having
the same quantum numbers, show quite different behav-
ior: S11(1535) couples strongly to the eta meson while the
resonance S11(1650) couples to it only very weakly. Fol-
lowing Hohler’s statement [4] that partial wave analyses
show no evident signature for the resonance S11(1535), we
investigated a Lee model with and without the resonance
S11(1535).

We found that using the Lee model the experi-
mental scattering data for various scattering channels
could be qualitatively reproduced without introducing the
S11(1535) resonance. Therefore we think that the reso-
nance S11(1535) is weaker and less important than gener-
ally accepted.

The S-matrix, together with its Riemann sheet struc-
ture, was studied. Eta threshold is the branch point where
four Riemann sheets become accessible! that were of im-
portance in our discussion. We found a specific distribu-
tion of poles on these sheets that determines the scattering
amplitude on the physical axis. Poles could be attributed
to resonance peak or the cusp peak. More precisely a pole
in the 4" sheet that until now has never been taken into
account, determines the shape of the cusp.

! For our convention of numbering the sheets see chapter 2.3
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When doing calculations close to eta threshold, rescat-

tering and full calculation to all orders are important.
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